The purpose of this study was to evaluate the properties and pharmacokinetics of liposomal vitamin C in powder form obtained by a method devoid of organic solvents. The powder and liposome morphology were analyzed using scanning electron microscopy (SEM) and cryogenic transmission electron microscopy (cryo-TEM), respectively. Additionally, the carrier particle size, size distribution (STEP-Technology®; L.U.M. GmbH, Berlin, Germany), and zeta potential value were determined. The pharmacokinetic parameters of liposomal and non-liposomal vitamin C (AUC, Cmax, C10h, and C24h) were compared in a randomized, single-dose, double-blind, cross-over trial (ClinicalTrials.gov ID: NCT05843617) involving healthy adult volunteers (n = 10, 1000 mg dose). The process of spray drying used to transform liquid suspensions of the liposomes into powder form did not adversely affect the quality of the carrier particles obtained. Compared to non-encapsulated vitamin C, oral administration of the liposomal formulation resulted in significantly better absorption of ascorbic acid into the bloodstream, which equated to a higher bioavailability of the liposomal product (30% increase in AUC, p < 0.05). The duration of elevated vitamin C blood levels was also longer (C24h increase of 30%, p < 0.05). Although the results obtained are promising and suggest higher bioavailability for the liposomal form of vitamin C, the limited sample size necessitates further research with a larger cohort to confirm these findings.
Read full abstract