Surface passivation with 2D perovskites has been reported to be important for high-performance perovskite solar cells (PSCs). However, it is challenging to achieve a controlled growth of 2D perovskites, which typically feature random orientation and various n number. In this paper, we fabricate a 2D layer with a highly ordered orientation and pure n = 1 phase on top of the perovskite film using the organic spacer molecule 7-fluoro-1,2,3,4-tetrahydroisoquinolinehydrochloride (7-FTH). The formed 2D perovskites feature a highly ordered orientation normal to the substrate and a pure n = 1 phase, which efficiently passivates surface defects of the as-prepared perovskite films and improves the energy level alignment between the perovskite film and electron transport layer. Consequently, the modified PSCs achieve a champion power conversion efficiency (PCE) of 24.65% with improved VOC and fill factor. After being stored in an N2 glovebox for 1200 h and kept in ambient air (room temperature and relative humidity of 50-70%) for 840 h, the modified devices retain 93% and 95% of its initial PCE, respectively.