Research on the appropriate method for evaluating phytoremediation efficiency is limited. A 2-year field experiment was conducted to investigate phytoremediation efficiency using the hyperaccumulator Pteris vittata on an arsenic (As)-contaminated site. The remediation efficiency was evaluated through the removal rate of As in soils and extraction rate of heavy metals in plants. After 2years of remediation, the concentration of total As in soils decreased from 16.27mgkg-1 in 2012 to 14.58mgkg-1 in 2014. The total remediation efficiency of As was 10.39% in terms of the removal rate of heavy metals calculated for soils, whereas the remediation efficiency calculated from As uptake by P. vittata was 16.09%. Such a discrepancy aroused further consideration on the potential input of As. A large amount of As was brought in by atmospheric emissions, which possibly biased the calculation of remediation efficiency. In fact, considering also the atmospheric depositions of As, the corrected removal rate of As from soil was 16.57%. Therefore, the results of this work suggest that (i) when evaluating the phytoextraction efficiency, the whole input and output cycle of the element of interest in the targeted ecosystem must be considered, and (ii) P. vittata has the potential to be used to remediate As-contaminated soils in Henan Province, China.