We present the anhydride-based decarboxylative alkylation of aryl iodides catalyzed by nickel. This method of decarboxylative coupling works with a broad scope of aliphatic carboxylic anhydrides and tolerates synthetically useful aromatic substituents. Assisted by a redox system of pyridine N-oxide and zinc additives, the current reaction occurs under mild conditions and without the assistance of photocatalyst. Notably, this method features high chemoselectivity toward alkyl migration with mixed aliphatic/aromatic anhydrides. Thus, it provides a powerful synthetic tool to modify high-valued aliphatic carboxylic acids by converting them into mixed anhydrides using readily available aryl carboxylic acids such as p-toluic acid. We propose a catalytic cycle that involves the key steps of free radical-based decarboxylation and subsequent alkyl transfer to nickel that precedes an oxidatively induced C–C reductive elimination from Ni(III).