Strong-flavor Baijiu (SFB) production has relied on pit mud (PM) as a starter culture. The maturation time of natural PM (NPM) is about 30 years, so artificial PM (APM) with a shorter maturation time has attracted widespread attention. This study reveals the microbial and functional dissimilarities of APM and NPM, and helps to elucidate the different metabolic roles of microbes during substrate degradation and flavor formation. Significant differences in the microbial community were observed between APM and NPM, manifesting as variations in the abundance of core microorganisms. Total of 187 high-quality metagenome-assembled genomes (MAGs) were obtained based on the metagenomic binning technology, mainly including Firmicutes (n = 106), Bacteroidota (n = 15) and Chloroflexota (n = 14). Furthermore, the relative concentration of flavor compounds in 4-year APM was similar to those in 30-year NPM, but different from those in 100-year NPMs. Methanosarcina, Methanobacterium, Methanoculleus, Anaerolineae bacterium and Aminobacterium were the key bacteria responsible for the flavor differences. From a functional perspective, amino acid and carbohydrate metabolism were key functions of PM microbial, and showed differences between APM and NPM. Finally, substrate degradation and flavor generation pathways were found to exist in multiple microorganisms. Combine the relative abundance of microorganisms with the absolute abundance of enzymes, Clostridium, Lactobacillus, Petrimonas, Methanoculleus, Prevotella, Methanobacterium, Methanosarcina, Methanothrix, Proteiniphilum, Bellilinea, Anaerolinea, Anaeromassilibacillus, Syntrophomonas and Brevefilum were identified as the key microorganisms in APM and NPM.
Read full abstract