The objective of the study was the composition of ash and slag waste from the Zmiiv TPP (thermal power plant) and the peculiarities of migration of heavy metals (HM) from the place of storage of ash and slag waste into the ecosystem. To achieve this goal, the following tasks were solved: chemical analysis of ash and slag waste of the Zmiiv TPP; identification of the probability of HM migration into the soil environment in the places of ash and slag waste storage. Ash and slag of the Zmiiv TPP contain Cu, Cr, As, Cd, Ni, Pb in quantities several times higher than the threshold limit value (TLV). For ash and slag wastes, the total pollution rate was Zc = 43, which corresponds to a high level. That is, this artificial horizon is dangerous. HMs migrate to groundwater and soils near the ash stockpiles as a result of infiltration of precipitation waters, leaks from water-bearing communications, water filtration through the base of the ash stockpiles of the Zmiiv TPP. To determine soil contamination near the ash stockpiles, we analyzed soil at the distances of 0, 5, 10, 50 and 100 meters. The contents of the HM decreased further away from the stockpiles. At the distance of up to 100 meters from the dump, there were excesses of the threshold limit values for Ni, Cu, As, Cr in the soil. The concentration factor exceeded one for Cr, As, Cu, Cd, Ni. Only at the distance of 100 meters did the contents of Pb and Zn reached the background values. The calculation of the total rate of soil contamination allowed us to classify these soils as moderately dangerous and acceptable. However, the Zn indicator has several significant disadvantages, particularly it does not take into account the differences in the potential hazards of the elements, as well as, most importantly, the synergistic effects of polymetallic pollution. The coefficient of synergistic effect of heavy metals was 26.64 (in the soil of the ash stockpiles), then decreased, but even at the distance of 100 meters it equaled 11.23, i.e. at the distance of 0... 100 m from the ash stockpiles, the overall actions exceed the norm. The study revealed that Cu, Ni, Zn and Cr had low mobility in the soil near the ash stockpiles and therefore accumulated near the stockpiles, which may be explained by neutral and slightly alkaline soil pH values. The ratio of mineral phases and glass varied, but we should note the predominance of aluminosilicates, calcium silicates and glass in the ash and slag wastes. Heavy metal compounds are confined mainly to amorphized clay aggregates and soot-coal ash formation, to a lesser extent to slag glass and even less to grains of quartz sand. Since ash contains such fractions that can be easily carried by the wind, it should be assumed that ingress of HM into the ecosystem occurs by air, which also contributes to air pollution. The solution to the problem of ash and slag waste disposal can be found in their utilization in the production of construction materials, in road construction, but it is necessary to study the composition of ash and slag and the probability of migration of HM depending on the conditions of use.