The ultrastructural nature of the calcifying interface in the scleractinian coral Galaxea fascicularis has been investigated using high-resolution, low temperature field emission scanning electron microscopy (FESEM). This technique permitted structural analyses of soft tissue and skeleton in G. fascicularis in a frozen-hydrated state, without the need for chemical fixation or decalcification. Structural comparisons are made between frozen-hydrated polyps and polyps that have undergone conventional fixation and decalcification. Vesicles expelled by the calicoblastic ectodermal cells into sub-skeletal spaces and previously suggested to play a role in calcification were commonly observed in fixed samples but were distinctly absent in frozen-hydrated preparations. We propose that these vesicles are fixation artefacts. Two distinct types of vesicles (380 and 70 nm in diameter, respectively), were predominant throughout the calicoblastic ectodermal cells of frozen-hydrated preparations, but these were never seen to be entering, or to be contained within, sub-skeletal spaces, nor did they contain any crystalline material. In frozen-hydrated preparations, membranous sheets were seen to surround and isolate portions of aboral mesogloea and to form junctional complexes with calicoblastic cells. The calicoblastic ectoderm was closely associated with the underlying skeleton, with sub-skeletal spaces significantly smaller ( P<0.0001) in frozen-hydrated polyps compared to fixed polyps. A network of organic filaments (26 nm in diameter) extended from the apical membranes of calicoblastic cells into these small sub-skeletal cavities. A thin sheath was also frequently observed adjacent to the apical membrane of calicoblastic cells.
Read full abstract