The paleoecology of reefal foraminifers and algae assumes a considerable importance in determining and delineating sub-environments of ancient reefs, especially those of non-coral origin. A review of the ecologic distribution of the Cenozoic larger foraminifers in different biofacies of the reef-complex environment has revealed the following: (1) a prolific growth of “ Alveolina” was possible in the back-reef region near the reef core; (2) Orbitolites and Marginopora preferred sheltered waters on the reef-flat and in the back-reef zones; (3) nummulitids and Discocyclina thrived in both fore- and back-reef shoal areas, but the species living in the former are much stouter than those living in the latter; (4) Heterostegina is and, in the geologic past, was a form, preferring quieter waters of the back-reef lagoons and reef-flat pools; (5) Pellatispira was a typical fore-reef form. Smaller foraminifers, as a whole, are dominant in back-reef lagoons. An abundance of miliolids indicates a sheltered environment prevailing in the reef-flat pools and back-reef zones, whereas reef flats, in general, are characterized by a paucity of smaller foraminifers. An increase in the number of nodosariids and globigerinids points to a fore-reef environment, the depth of which is indicated by the relative abundance of the latter group. Encrusting foraminifers are characteristic of the reef core and are important constituents of for-algal (foraminiferal + algal) reef complexes. Of the algae, the calcarous chlorophyte Halimeda is relatively more abundant in the sheltered parts of a reef-complex, especially the lagoons, where water is moderately agitated and clear; its sudden abundance in the geologic record indicates the advent of a reefal environment. An abundance of the calcareous chlorophyte Dasycladaceae indicates the shallow back-reef areas adjacent to the reef core. Articulated coralline algae are associated with reef-complexes but are varied in their adaptability and, hence, are widely distributed in different parts of the complex. Abundant crustose coralline algae almost certainly indicate a reef-core sub-environment; their skeletons are among the chief constructional units of the core. They increase in abundance towards the outer edge of the reef core and decrease away from it.