Molecular transport between the circulatory and musculoskeletal systems regulates articular joint physiology in health and disease. Osteoarthritis (OA) is a degenerative joint disease linked to systemic and local inflammation. Inflammatory events involve cytokines, which are secreted by cells of the immune system and modulate molecular transport across tissue interfaces (referred to as tight junction [TJ] barrier function). In a previous study from our group, OA knee joint tissues were shown to exhibit size separation of different sized molecules delivered as a single bolus to the heart (Ngo et al. in Sci. Rep. 8:10254, 2018). Here, in a follow up study of parallel design, we test the hypothesis that two common cytokines, with multifaceted roles in the etiology of osteoarthritis as well as immune state in general, modulate the barrier function properties of joint tissue interfaces. Specifically, we probe the effect of an acute cytokine increase (spike) on molecular transport within tissues and across tissue interfaces of the circulatory and musculoskeletal systems. A single bolus of fluorescent-tagged 70 kDa dextran, was delivered intracardially, either alone, or with either the pro-inflammatory cytokine TNF-α or the anti-inflammatory cytokine TGF-β, to skeletally mature (11 to 13-month-old) guinea pigs (Dunkin-Hartley, a spontaneous OA animal model). After five minutes' circulation, whole knee joints were serial sectioned and fluorescent block face cryo-imaged at near-single-cell resolution. The 70 kDa fluorescent-tagged tracer is analogous in size to albumin, the most prevalent blood transporter protein, and quantification of tracer fluorescence intensity gave a measure of tracer concentration. Within five minutes, a spike (acute doubling) in circulating cytokines TNF-α or TGF-β significantly disrupted barrier function between the circulatory and musculoskeletal systems, with barrier function essentially abrogated in the TNF-α group. In the entire volume of the joint (including all tissue compartments and the bounding musculature), tracer concentration was significantly decreased in the TGF-β- and TNF-α- compared to the control-group. These studies implicate inflammatory cytokines as gatekeepers for molecular passage within and between tissue compartments of our joints and may open new means to delay the onset and mitigate the progression of degenerative joint diseases such as OA, using pharmaceutical and/or physical measures.
Read full abstract