In the field of calligraphy art, simulating the stroke features of calligraphers has always been a challenging task. Traditional methods often rely on manually designed rules or feature extraction algorithms, which are difficult to accurately capture calligraphy details and time-consuming. This article aimed to explore a more effective method to simulate the stroke features of calligraphers using neural network technology. This article mainly explored the simulation algorithm of calligrapher stroke features based on neural networks, including calligrapher stroke feature statistics, calligrapher stroke feature abstraction, and calligrapher stroke feature extraction. By using Convolutional Neural Network (CNN) to learn and analyze calligraphy works, a better performance neural network model was established to achieve automatic recognition and classification of calligrapher stroke features. By continuously optimizing model parameters, the accuracy of calligrapher stroke feature simulation can be improved. The average similarity rates for imitating stroke features of five calligraphers (regular script, cursive script, clerical script, seal script, and running script) using Artificial Neural Network (ANN) were 0.72, 0.62, 0.40, 0.33, and 0.53, respectively. The average similarity rates for imitating stroke features of 5 calligraphers (regular script, cursive script, clerical script, seal script, and running script) using CNN were 0.93, 0.78, 0.87, 0.67, and 0.80, respectively. The research results of this article promoted the inheritance and innovation of calligraphy art, and expanded the expression forms and application fields of calligraphy art.
Read full abstract