To determine whether a suspect was in close contact with the fire source at a fire site through slight thermal damage to hair, a cone calorimeter was employed to simulate fire scene conditions as a standard radiant source. The research focused on analyzing the thermal behavior of black hair and delving into the morphological characteristics of hair exhibiting slight thermal damage. At temperatures exceeding 240 °C, the proteins within the hair began to degrade. This degradation, in conjunction with tension along the hair shaft resulting from water loss, led to the formation of microcracks that could be detected through scanning electron microscopy (SEM) but eluded observation with an optical microscope (OM). It is noteworthy that the initial slight thermal damage was regularly located at the hair shaft but not the hair tip, which should be the key parts when exanimating hairs without obvious thermal damage. Additionally, during very short exposure, the appearance of typical slight thermal damage on fire is probabilistic events. Along with the increase of temperature, the organic compounds in hair were thermally degraded into NH3, SCO and carbon CO2, resulting in the typical traces of discoloration, expansion, blistering, and cracking presented at hair shafts and tips. The probability of encountering both slight and obvious thermal damage on hair increased with rising temperatures. By observing the traces on the easily overlooked part of the hair shaft, the research established a method to analyze and discriminate the slight thermal damage to hair at fire scene, which provide valuable references for confirming arson suspects.
Read full abstract