Insulin-like androgenic gland factor (IAG) from the marbled crayfish Procambarus virginalis is an insulin-like heterodimeric peptide composed of A and B chains and has an Asn-linked glycan at the B chain. IAG is considered to be a male sex hormone inducing the sex differentiation to male in decapod crustacean, although there is no report on the function of IAG peptide in vivo. In order to characterize P. virginalis IAG, we chemically synthesized it and evaluated its biological function in vivo. A and B chains were prepared by the ordinary solid-phase peptide synthesis, and three disulfide bonds were formed regioselectively by dimethyl sulfoxide oxidation, pyridylsulfenyl-directed thiolysis and iodine oxidation reactions. An IAG disulfide isomer was also prepared by the same manner. Circular dichroism spectral analysis revealed that the disulfide bond arrangement affected the peptide conformation, which was similar to the other insulin-family peptides analyzed so far. On the other hand, the glycan moiety attached at the B chain had no effect on the peptide secondary structure. Injection of the synthetic IAG and its disulfide isomer to female crayfish did not induce male characteristics on the external morphology, but both peptides suppressed the oocyte maturation in vivo. These results suggest that IAG has a pivotal role on the suppression of female secondary sex characteristics.
Read full abstract