Chronic neurological disorders (CND's) are lifelong diseases and cannot be eradicated, but their severe effects can be alleviated by early preemptive measures. CND's, such as Alzheimer's, Autism Spectrum Disorder (ASD), and Amyotrophic Lateral Sclerosis (ALS), are the chronic ailment of the central nervous system that causes the degradation of emotional and cognitive abilities. Long term continuous monitoring with neuro-feedback of human emotions for patients with CND's is crucial in mitigating its harmful effect. This paper presents hardware efficient and dedicated human emotion classification processor for CND's. Scalp EEG is used for the emotion's classification using the valence and arousal scales. A linear support vector machine classifier is used with power spectral density, logarithmic interhemispheric power spectral ratio, and the interhemispheric power spectral difference of eight EEG channel locations suitable for a wearable non-invasive classification system. A look-up-table based logarithmic division unit (LDU) is to represent the division features in machine learning (ML) applications. The implemented LDU minimizes the cost of integer division by 34% for ML applications. The implemented emotion's classification processor achieved an accuracy of 72.96% and 73.14%, respectively, for the valence and arousal classification on multiple publicly available datasets. The 2 x 3mm2 processor is fabricated using a 0.18μm 1P6M CMOS process with power and energy utilization of 2.04 mW and 16μJ/classification, respectively, for 8-channel operation.
Read full abstract