BackgroundInvestigation of the internal tissues and organs of a macroscopic organism usually requires destructive processes, such as dissection or sectioning. These processes are inevitably associated with the loss of some spatial information. Recently, aqueous-based tissue clearing techniques, which allow whole-organ or even whole-body clearing of small rodents, have been developed and opened a new method of three-dimensional histology. It is expected that these techniques will be useful tools in the field of zoology, in which organisms with highly diverse morphology are investigated and compared. However, most of these new methods are optimized for soft, non-pigmented organs in small rodents, especially the brain, and their applicability to non-model organisms with hard exoskeletons and stronger pigmentation has not been tested.ResultsWe explored the possible application of an aqueous-based tissue clearing technique, advanced CUBIC, on small crustaceans. The original CUBIC procedure did not clear the terrestrial isopod, Armadillidium vulgare. Therefore, to apply the whole-mount clearing method to isopods with strong pigmentation and calcified exoskeletons, we introduced several pretreatment steps, including decalcification and bleaching. Thereafter, the clearing capacity of the procedure was dramatically improved, and A. vulgare became transparent. The internal organs, such as the digestive tract and male reproductive organs, were visible through sclerites using an ordinary stereomicroscope. We also found that fluorescent nuclear staining using propidium iodide (PI) helped to visualize the internal organs of cleared specimens. Our procedure was also effective on the marine crab, Philyra sp.ConclusionsIn this study, we developed a method to clear whole tissues of crustaceans. To the best of our knowledge, this is the first report of whole-mount clearing applied to crustaceans using an aqueous-based technique. This technique could facilitate morphological studies of crustaceans and other organisms with calcified exoskeletons and pigmentation.
Read full abstract