Birth defects and their associated deaths, high health and financial costs of maternal care and associated morbidity are major contributors to infant mortality. If permitted by law, prenatal diagnosis allows for intrauterine care, more complicated hospital deliveries, and termination of pregnancy. During pregnancy, a set of measurements is commonly used to monitor the fetal health, including fetal head circumference, crown-rump length, abdominal circumference, and femur length. Because of the intricate interactions between the biological tissues and the US waves mother and fetus, analyzing fetal US images from a specialized perspective is difficult. Artifacts include acoustic shadows, speckle noise, motion blur, and missing borders. The fetus moves quickly, body structures close, and the weeks of pregnancy vary greatly. In this work, we propose a fetal growth analysis through US image of head circumference biometry using optimal segmentation and hybrid classifier. First, we introduce a hybrid whale with oppositional fruit fly optimization (WOFF) algorithm for optimal segmentation of segment fetal head which improves the detection accuracy. Next, an improved U-Net design is utilized for the hidden feature (head circumference biometry) extraction which extracts features from the segmented extraction. Then, we design a modified Boosting arithmetic optimization (MBAO) algorithm for feature optimization to selects optimal best features among multiple features for the reduction of data dimensionality issues. Furthermore, a hybrid deep learning technique called bi-directional LSTM with convolutional neural network (B-LSTM-CNN) for fetal growth analysis to compute the fetus growth and health. Finally, we validate our proposed method through the open benchmark datasets are HC18 (Ultrasound image) and oxford university research archive (ORA-data) (Ultrasound video frames). We compared the simulation results of our proposed algorithm with the existing state-of-art techniques in terms of various metrics.
Read full abstract