Abstract Ice shelves regulate the flow of the Antarctic ice sheet toward the ocean and its contribution to sea-level rise. Accurately monitoring the basal and surface melting of ice shelves is therefore essential for predicting the ice sheet's response to climatic warming. In this study, we utilize Sentinel-1A synthetic aperture radar satellite imagery combined with shipboard measurements of water temperature and salinity to investigate the presence of surficial meltwater plumes along the Antarctic coastline. Our approach reveals a strong correlation between areas of pronounced low radar backscatter extending from ice shelves and significant decreases in water temperature and salinity, suggesting meltwater-enriched ocean waters. We propose that the low radar backscatter signature of meltwater outflows is caused by stable stratification of the upper water column, driven by density contrasts from buoyant, low-salinity meltwater and surface current shear that reduce Bragg scattering waves. The resulting smooth water surfaces were observed adjacent to the surface expression of deep basal channels, documented in a helicopter survey along part of the Bellingshausen Sea ice edge. We present high-temporal resolution satellite radar as a tool for identifying meltwater release from beneath ice shelves, capable of all-weather, day-and-night imaging.
Read full abstract