Herein, nickel-cobalt sulfide (NCS) nanoflakes covering the surface of Cu(OH)2 nanorods were achieved by a facile two-step electrodeposition strategy. The effect of CH4N2S concentration on formation mechanism and electrochemical behavior is investigated and optimized. Thanks to the synergistic effect of the selected composite components, the Cu(OH)2/NCS composite electrode can deliver a high areal specific capacitance (Cs) of 7.80 F cm-2 at 2 mA cm-2 and sustain 5.74 F cm-2 at 40 mA cm-2. In addition, coulombic efficiency was up to 84.30% and cyclic stability remained 82.93% within 5000 cycles at 40 mA cm-2. This innovative work provides an effective strategy for the design and construction of hierarchical composite electrodes for the development of energy storage devices.