BackgroundT1 mapping can potentially quantitatively assess the intrinsic properties of tumors. This study was conducted to explore the ability of T1 mapping in distinguishing cervical cancer type, grade, and stage and compare the diagnostic performance of T1 mapping with diffusion kurtosis imaging (DKI).MethodsOne hundred fifty-seven patients with pathologically confirmed cervical cancer were enrolled in this prospectively study. T1 mapping and DKI were performed. The native T1, difference between native and postcontrast T1 (T1diff), mean kurtosis (MK), mean diffusivity (MD), and apparent diffusion coefficient (ADC) were calculated. Cervical squamous cell carcinoma (CSCC) and adenocarcinoma (CAC), low- and high-grade carcinomas, and early- and advanced-stage groups were compared using area under the receiver operating characteristic (AUROC) curves.ResultsThe native T1 and MK were higher, and the MD and ADC were lower for CSCC than for CAC (all p < 0.05). Compared with low-grade CSCC, high-grade CSCC had decreased T1diff, MD, ADC, and increased MK (p < 0.05). Compared with low-grade CAC, high-grade CAC had decreased T1diff and increased MK (p < 0.05). Native T1 was significantly higher in the advanced-stage group than in the early-stage group (p < 0.05). The AUROC curves of native T1, MK, ADC and MD were 0,772, 0.731, 0.715, and 0.627, respectively, for distinguishing CSCC from CAC. The AUROC values were 0.762 between high- and low-grade CSCC and 0.835 between high- and low-grade CAC, with T1diff and MK showing the best discriminative values, respectively. For distinguishing between advanced-stage and early-stage cervical cancer, only the AUROC of native T1 was statistically significant (AUROC = 0.651, p = 0.002).ConclusionsCompared with DKI-derived parameters, native T1 exhibits better efficacy for identifying cervical cancer subtype and stage, and T1diff exhibits comparable discriminative value for cervical cancer grade.