Benggangs are a unique type of soil erosion commonly found in southern China, with the gully wall being the most dynamic component of the Benggang system and is crucial for assessing its overall progression. The unsaturated shear strength of soil in Benggang areas is a key factor influencing the stability of the gully wall. However, quantitative analyses of the unsaturated shear strength in the gully walls of Benggangs remain limited. In this study, the soil–water characteristic curves (SWCC) and shear strengths of undisturbed soil samples from four different soil layers in the gully wall of Benggang were measured using a pressure membrane meter and a quadruple direct shear apparatus. The results revealed that the water holding capacity of the soil decreased gradually with increasing matrix suction, and the order of the water holding capacity was the sandy soil layer > transition layer > laterite layer > clastic layer. With an increasing soil water content (SWC), the shear strength, cohesion (c), and internal friction angle (φ) of the four soil layers decreased significantly, and the φ showed a power function decreasing curve (p < 0.05), whereas c in the laterite layer and transition layer exhibited a power function decreasing curve (p < 0.01). The c of the sandy soil layer and clastic layer decreased linearly and logarithmically (p < 0.01) with increasing SWC, respectively. The unsaturated shear strength model for the four soil layers was developed based on the Vanapalli model. The root mean square error (RMSE) of the simulated and measured values was less than 29.349, while the Nash–Sutcliffe efficiency (NSE) and R2 values were greater than 0.638 and 0.788, respectively. The model can be used to analyze and predict the unsaturated shear strength in different layers of Benggang gully walls, providing a theoretical foundation for studying the erosion mechanisms of Benggangs.
Read full abstract