Land subsidence detection in residential areas based on advanced remotely sensed data is an effective technique to mitigate catastrophic disasters in time. Synthetic aperture radar (SAR) in spaceborne platforms is a highly sophisticated technique to estimate ground surface subsidence with millimeter accuracy for wide-area observation. SAR is beneficial for large-scale social infrastructure project planning and monitoring in densely populated residential areas. In this study, we applied a permanent scatterer (PS) interferometric SAR (PS-InSAR)-based technique for monitoring land subsidence in a tunnel construction site in the Greater Tokyo Area to investigate tunnel-induced ground surface subsidence. Sentinel-1 repeat-pass SAR data in ascending and descending orbital directions were used for continuous observation. Consecutively estimated interferograms based on repeat-pass SAR data were generated to monitor and detect tunnel-induced land subsidence as well as confirm long-term stability along the tunnel excavation path. A bidirectional displacement of the ground area parallel to the earth’s surface in the east–west direction and perpendicular to the earth’s surface in the up–down direction was estimated at a high-phase consistency location using a PS interferometric stacking technique. The resultant data were then analyzed to detect anomalies in the ground area in the spatiotemporal domains by performing displacement time-series analysis. An area near Higashi-Tsutsujigaoka’s local administrative region in the metropolitan center of Tokyo was observed to have 15-mm subsidence and 30-mm displacement in the east–west direction during August–October 2020. The conventional level survey results in the same ground area showed 15–20-mm subsidence above the tunnel excavation path. The findings of this study offer insights into understanding land subsidence in residential environments.