Afferent projections to the thalamic lateral dorsal nucleus were examined in the rat by the use of retrograde axonal transport techniques. Small iontophoretic injections of horseradish peroxidase were placed at various locations within the lateral dorsal nucleus, and the location and morphology of cells of origin of afferent projections were identified by retrograde labeling. For all cases examined, subcortical retrogradely labeled neurons were most prominent in the pretectal complex, the intermediate layers of the superior colliculus, and the ventral lateral geniculate nucleus. Labeled cells were also seen in the thalamic reticular nucleus and the zona incerta. Within the cerebral cortex, labeled cells were prominent in the retrosplenial areas (areas 29b, 29c, and 29d) and the presubiculum. Labeled cells were also seen in areas 17 and 18 of occipital cortex. Peroxidase injections in the dorsal lateral part of the lateral dorsal nucleus result in labeled neurons in all of the ipsilateral pretectal nuclei, but especially those that receive direct retinal afferents. Labeled cells were also seen in the ventral lateral geniculate nucleus and the rostral tip of laminae IV-VI of the superior colliculus. In contrast, peroxidase injections in ventral medial portions of the lateral dorsal nucleus result in fewer labeled pretectal cells, and these labeled cells are found exclusively in the pretectal nuclei that do not receive retinal afferents. Other labeled cells following injections in the rostral and medial portions of the lateral dorsal nucleus are seen contralaterally in the medial pretectal region and nucleus of the posterior commissure, and bilaterally in the rostral tips of laminae IV and V of the superior colliculus. Camera lucida drawings of HRP labeled cells reveal that projecting cells in each pretectal nucleus have a characteristic soma size and dendritic branching pattern. These results are discussed with regard to the type of sensory information that may reach the lateral dorsal nucleus and then be relayed on to the medial limbic cortex.
Read full abstract