“The Guide to the Expression of Uncertainty in Measurement” (GUM) method has many disadvantages when evaluating the uncertainty of wind speed measured by pitot tube, and the “Monte Carlo method” (MCM) is put forward to evaluate the uncertainty of wind speed. The measured quantity value of wind speed by the S-shaped pitot tube is the research object, and the uncertainty is evaluated by GUM and MCM, respectively, and the simulation test is carried out. GUM has errors due to its adoption of approximate linear model. MCM adopts real simulation strategy and has higher credibility than the GUM method, so the GUM method can be validated by the MCM method. When the partial input quantity is changed into triangular distribution, uniform distribution and arcsine distribution, the GUM method is found to be inapplicable. In the evaluation of MCM method, the complex calculation of sensitivity coefficient is avoided, and some uncertainty with small influencing quantity is not needed to be discarded. The evaluation result is more complete. Through comparing the uncertainty evaluation results of MCM before and after the water vapor correction term is discarded, the influence of the water vapor correction term is quantified. Therefore, compared with the GUM method, the MCM method has more advantages when wind speed is measured by pitot tube.