ALK-tyrosine kinase inhibitors (ALK-TKIs) are effective for treating non-small-cell lung cancer with ALK gene rearrangement; however, resistance is inevitable. Brigatinib is a unique ALK-TKI that is effective against many resistance mutations. However, data on factors associated with its efficacy and resistance mechanisms are limited. This study will evaluate the efficacy and safety of brigatinib in the real world and explore factors related to its efficacy, safety, and resistance mechanisms. Prospective observational study. This study is approved by the Ethics Committee of Wakayama Medical University. Written informed consent will be obtained from all patients before study-related procedures. This study comprises three cohorts. Cohorts A, B, and 0 will enroll patients receiving alectinib as the first ALK-TKI, receiving alectinib as the first ALK-TKI and subsequently cytotoxic agents and/or lorlatinib after alectinib, and without a history of ALK-TKI, respectively. Overall, 100, 30, and 50 patients will be enrolled in Cohorts A, B, and 0, respectively. Circulating tumor DNA before starting brigatinib and at disease progression will be analyzed in all cohorts using a hypersensitive next-generation sequencing (NGS) PGDx Elio plasma resolve panel. Serum protein levels will be analyzed using the Milliplex xMAP assay system with a Luminex 200 (Luminex, Austin, USA). The enrollment period is 31 months and the patients will be observed for 2 years after enrollment. Archived tissues will be collected for NGS analysis, gene expression analysis, and immunohistochemistry staining 1 year after completion of registration. Quality of life and safety evaluation using electronic patient-reported outcomes will be investigated. This study will elucidate predictors of ALK-TKI efficacy and resistance mechanisms and evaluate the efficacy and safety of brigatinib in a real-world setting. The results will provide crucial information for establishing treatment strategies, discovering novel biomarkers, and developing new therapeutic agents. UMIN000042439.
Read full abstract