Reservoir computing offers a powerful neuromorphic computing architecture for spatiotemporal signal processing. To boost the power efficiency of the hardware implementations of reservoir computing systems, analogue devices and components—including spintronic oscillators, photonic modules, nanowire networks and memristors—have been used to partially replace the elements of fully digital systems. However, the development of fully analogue reservoir computing systems remains limited. Here we report a fully analogue reservoir computing system that uses dynamic memristors for the reservoir layer and non-volatile memristors for the readout layer. The system can efficiently process spatiotemporal signals in real time with three orders of magnitude lower power consumption than digital hardware. We illustrate the capabilities of the system using temporal arrhythmia detection and spatiotemporal dynamic gesture recognition tasks, achieving accuracies of 96.6% and 97.9%, respectively. Our memristor-based fully analogue reservoir computing system could be of use in edge computing applications that require extremely low power and hardware cost.
Read full abstract