Irritable bowel disease (IBD), also known as ulcerative colitis and Crohn's disease, is a chronic inflammatory disorder affecting millions of people worldwide. Herein, nano-encapsulated multi-strain probiotics formulation, comprising Bifidobacterium breve DSM24732 and B. coagulans SANK 70258 and L. plantarum DSM24730 (BBLNPs) is used as an effective intervention technique for attenuating IBD through gut microenvironment regulation. The efficacy of the prophylactic role of BBLNPs in alleviating injury induced by dextran sulfate sodium (DSS) was evaluated by assessing oxidative and inflammatory responses, levels of short-chain fatty acids (SCFAs) and their regulation on GPR41/43 pathway, expression of genes related to tight-junctions and autophagy, immunohistochemistry of IL1β and GPR43, and histological examination of inflamed colonic tissue. The severity of clinical signs and paracellular permeability to FITC (fluorescein isothiocyanate)-labeled dextran was significantly decreased after BBLNP treatment. Reduction of oxidative stress-associated biomarkers (MDA, ROS, and H2O2) and acceleration of antioxidant enzyme activities (SOD, CAT, and GSH-Px) were noted in the BBLNP-treated group. Subsiding of inflammatory markers (TNF-α, IL-18, IL-6, TRL-4, CD-8, NLRP3, and caspase 1) and upregulation of tight-junction-related genes (occludin and JAM) was detected in BBLNPs. Administration of BBLNPs remarkably resulted in a higher level of SCFAs which parrel with colonic upregulation of GPR41 and GPR43 expression compared to DSS-treated rats. Notable modulation of autophagy-related genes (p62, mTOR, LC3, and Beclin-1) was identified post BBLNP treatment. The mRNA expressions of p62 and mTOR were significantly downregulated, while LC3 and Beclin-1 were upregulated after prophylactic treatment with BBLNPs. Immune-stained labeled cells showed lower expression of IL-1β and higher expression levels of GPR43 in BBLNPs compared to the DSS-induced group. The intestinal damage caused by DSSwas effectively mitigated by oral BBLNP treatment, as supported by the restoration of healthy colonic tissue architecture. The findings suggest that BBLNPs have a promising avenue in the remission of IBD by modulating inflammation, oxidative stress, microbial metabolites such as SCFAs, and autophagy.
Read full abstract