Existing approaches from design to concrete 3D-printing fabrication can customize the shapes of compression-dominated concrete arches and vaults but has limited applications due to high facility requirements such as a robotic arm and a reconfigurable print bed for fabricating overhanging geometries. Therefore, there is a need to develop an alternative design-to-fabrication approach for 3D printers without such facility requirements. In this paper, concrete blocks were designed as prismatic shapes which could be customized by a most basic, gantry-based 3D printer with a flat print bed and could be assembled to a larger 3D arch structure designed based on stability and strength analyses. The feasibility of such approach was demonstrated by lab prototyping. Reduced facility requirements in this approach allow 3D-printing to be more widely applied for customizing compression-dominated structures. With further design method innovation in the future, this design-to-fabrication approach can be extended for compression-dominated structures with more complex geometries.