Human plantar intrinsic foot muscles consist of 10 muscles that originate and insert within the sole of the foot. It is known that the anatomical cross-sectional area (ACSA) and muscle thickness of two plantar intrinsic foot muscles, the flexor hallucis brevis (FHB) and abductor hallucis (ABH), associate with morphological parameters of the foot, such as total and truncated foot length and navicular height. However, it is unclear how the size for each of the plantar intrinsic foot muscles associates with various morphological profiles of the foot. This study aimed to elucidate this subject. By using magnetic resonance imaging (MRI), serial images of the right foot were obtained in 13 young adult men without foot deformities. From the obtained MR images, ACSA for each of the individual plantar intrinsic foot muscles was analyzed along the foot length, and then its muscle volume (MV) was calculated. The analyzed muscles were the abductor digiti minimi (ABDM), ABH, adductor hallucis oblique head (ADDH-OH), adductor hallucis transverse head (ADDH-TH), flexor digitorum brevis (FDB), FHB, and quadratus plantae (QP). Furthermore, MV of the whole plantar intrinsic foot muscle (WHOLE) was defined as the total MVs of all the analyzed muscles. As morphological parameters, total foot length, truncated foot length, forefoot width, ball circumference, instep circumference, navicular height, great toe eversion angle, and little toe inversion angle were measured using a laser three-dimensional foot scanner in standing and sitting conditions. In addition, navicular drop (ND) and normalized truncated navicular height (NTNH) were also calculated as medial longitudinal arch (MLA) height indices. The MV of WHOLE was significantly associated with the forefoot width, ball circumference, and instep circumference (r=0.647-0.711, p=0.006-0.013). Positive correlations were found between the forefoot width and MV of FHB, FDB, and QP (r=0.564-0.653, p=0.015-0.045), between the ball circumference and MV of QP (r=0.559, p=0.047), between the instep circumference and MV of FHB (r=0.609, p=0.027), and between the little toe inversion angle and MV of QP (r=0.570, p=0.042). The MVs of ABH, ABDM, and ADDH-OH were not significantly correlated with any morphological parameters of the foot. Similarly, no significant correlations were found between MV of each muscle and either of the MLA height indices (ND and NTNH). Thus, the current results indicate that forefoot width and circumferential parameters (instep and ball circumference), not MLA height, associate with the size of the whole plantar intrinsic foot muscles, especially those specialized in toe flexion (FHB, FDB, and QP).