In this work, we show how to parameterize a density matrix that has an arbitrary symmetry, knowing the generators of the Lie algebra (if the symmetry group is a connected Lie group) or the generators of its underlying group (in case it is finite). This allows to pose MaxEnt and MaxLik estimation techniques as convex optimization problems with a substantial reduction in the number of parameters of the function involved. This implies that, apart from a computational advantage due to the fact that the optimization is performed in a reduced space, the amount of experimental data needed for a good estimation of the density matrix can be reduced as well. In addition, we run numerical experiments and apply these parameterizations to estimate quantum states with different symmetries.
Read full abstract