A method for determining the mutual nearest neighbours (MNN) and mutual neighbourhood value (mnv) of a sample point, using the conventional nearest neighbours, is suggested. A nonparametric, hierarchical, agglomerative clustering algorithm is developed using the above concepts. The algorithm is simple, deterministic, noniterative, requires low storage and is able to discern spherical and nonspherical clusters. The method is applicable to a wide class of data of arbitrary shape, large size and high dimensionality. The algorithm can discern mutually homogenous clusters. Strong or weak patterns can be discerned by properly choosing the neighbourhood width.