The seasonal nature of wine production results in the accumulation of significant quantities of grape pomace (GP) during harvest, presenting management challenges for wineries that traditionally regard this solid byproduct as low-value waste. However, extracting phenolic compounds (PCs) from GP offers a promising avenue for creating bioactive extracts for use in the food, pharmaceutical, and cosmetic industries. This study develops a mathematical model for predicting the total phenolic content (TPC) and total dissolved solids (TDS) in liquids obtained from multi-equilibrium-stage extraction processes using a 50% aqueous ethanol solution to recover PCs from Tannat GP. The model is applicable across a wide range of TPC and TDS concentrations in the liquid (0.2-45.4 gGAE/L for TPC and 1 to 118 g/L for TDS) and extraction temperatures between 30 and 70 °C. It is used to determine the optimal operational conditions of a Shanks extraction system, either to minimize fresh solvent consumption or to maximize selectivity for PCs extraction, achieving a desired extraction yield with a specified number of extraction vessels.
Read full abstract