Abstract
The photocatalytic activity of the g-C3N4 /TiO2 composite samples in the processes of dye (methylene blue) decomposition and hydrogen evolution from an aqueous ethanol solution under the action of visible radiation (400 nm) has been studied. A new original method for the synthesis of the g-C3N4 /TiO2 composite by depositing g-C3N4 /TiO2 to TiO2 nanoparticles during sol-gel synthesis is proposed. The synthesized photocatalysts were characterized by X-ray diffraction, low-temperature gas adsorption, X-ray photoelectron spectroscopy, high-resolution transmission microscopy, and diffuse reflectance spectroscopy in the UV and visible regions. The maximum activity in the hydrogen evolution reaction was 1.3 mmol h–1, which exceeds the rate of hydrogen evolution on the unmodified g-C3N4 and TiO2 samples.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.