Abstract Biological assemblages in streams are influenced by hydrological dynamics, particularly in non‐perennial systems. Although there has been increasing attention on how drying impacts stream organisms, few studies have investigated how specific characteristics of drying and subsequent wetting transitions influence biotic responses via resistance and resilience traits. Here, we characterized how hydrologic metrics, including those quantifying drying and wetting transitions as well as dry and wet phases, alter diversity and composition of three aquatic assemblages in non‐perennial streams in southern California: benthic macroinvertebrates, soft‐bodied algae and diatoms. We found that flow duration prior to sampling was correlated with variation in macroinvertebrate and soft‐bodied algal assemblage composition. The composition and richness of diatom assemblages, however, were predominantly influenced by the drying start date prior to sampling. Contrary to other studies, the duration of the dry phase prior to sampling did not influence the composition or richness of any assemblage. Although our study was conducted within a region in which each assemblage experienced comparable environmental conditions, we found no single hydrologic metric that influenced all assemblages in the same way. The hot‐summer Mediterranean climate of southern California likely acts as a strong environmental filter, with taxa in this region relying on resistance and resilience adaptations to survive and recolonize non‐perennial streams following wetting. The different responses of algal and diatom assemblages to hydrologic metrics suggest greater resilience to drying and wetting events, particularly for primary producers. As drying and wetting patterns continue to change, understanding biodiversity responses to hydrologic metrics could inform management actions that enhance the ecological resilience of communities in non‐perennial streams. In particular, the creation and enhancement of flow regimes in which natural timing and duration of dry and wet phases sustain refuges that support community persistence in a changing environment.
Read full abstract