DNAzymes have attracted increasing interest in developments of gene tools, therapies, and biosensors. Among them, G-quadruplexes are widely used as the key structure elements of DNAzymes to activate the catalytic competency of specific cofactors, such as hemin, but there is a great demand to diversify DNAzymes using other more straightforward DNA structures such as fully matched duplex (FM-DNA). However, the perfect base pairs in duplex limit the DNAzyme activity. In this work, a photocatalytic DNAzyme was developed by introducing an abasic site (AP site) into duplex (AP-DNA) to switch its photocatalytic activity. Palmatine (PAL), a photosensitizer from natural isoquinoline alkaloids, served as a cofactor of the DNAzyme by binding at the AP site. The AP site provides a less polarized environment to favor the PAL fluorescence. As a result, dissolved oxygen was converted into singlet oxygen (1O2) via energy transfer from the excited PAL. The oxidation of substrates by the in situ photogenerated 1O2 served as a readout for the DNAzyme. In addition, the duplex-based DNAzyme was engineered from FM-DNA by the cascade uracil-DNA glycosylase to generate AP-DNA. Our work provides a new way to construct duplex-based DNAzymes.
Read full abstract