Riboswitches are highly structured RNA regulators of gene expression. Although found in all three domains of life, they are particularly abundant and widespread in bacteria, including many human pathogens, thus making them an attractive target for antimicrobial development. Moreover, the functional versatility of riboswitches to recognize a myriad of ligands, including ions, amino acids, and diverse small-molecule metabolites, has enabled the generation of synthetic aptamers that have been used as molecular probes, sensors, and regulatory RNA devices. Generally speaking, a riboswitch consists of a ligand-sensing aptamer domain and an expression platform, whose genetic control is achieved through the formation of mutually exclusive secondary structures in a ligand-dependent manner. For most riboswitches, this involves formation of the aptamer's P1 helix and the regulation of its stability, whose competing structure turns gene expression ON/OFF at the level of transcription or translation. Structural knowledge of the conformational changes involving the P1 regulatory helix, therefore, is essential in understanding the structural basis for ligand-induced conformational switching. This review provides a summary of riboswitch cases for which ligand-free and ligand-bound structures have been determined. Comparative analyses of these structures illustrate the uniqueness of these riboswitches, not only in ligand sensing but also in the various structural mechanisms used to achieve the same end of regulating switch helix stability. In all cases, the ligand stabilizes the P1 helix primarily through coaxial stacking interactions that promote helical continuity.
Read full abstract