Abstract

Sarafloxacin (SAR), one of the most widely used fluoroquinolone antibiotics, is a serious threat to aquatic environments and human health due to its illegal abuse. Herein, we first screened an aptamer (SAR-1) that specifically binds to SAR using capture-SELEX technology. Based on molecular docking technology, SAR-1 was gradually truncated, and a short SAR-1a with better affinity and specificity was obtained. The optimal SAR-1a was further combined with a Pt nanoparticle (Pt NP)- decorated bimetallic Fe/Co-MOF to fabricate a multimode sensing platform for SAR determination. The Fe/Co-MOF@Pt NPs exhibited excellent peroxidase-like activity, which catalyzed the H2O2-mediated oxidation of 3,3′,5,5′-tetramethylbenzidine (TMB), thereby enabling visual detection of SAR. Meanwhile, the generated oxTMB can also produce SERS responses and be used for the SERS detection of SAR. Moreover, the inherent fluorescence property of Fe/Co-MOF@Pt NPs enabled fluorescence detection of SAR. The designed triple-readout aptasensor showed good sensitivity for SAR detection with limits of detection of 0.125 ng/mL (fluorescent mode) and 0.05 ng/mL (colorimetric and SERS mode). The aptamer-based triple-mode sensing platform provided mutual verification of detection results in different output modes, effectively improving the assay accuracy and providing a promising tool for highly sensitive, selective, and accurate determination of SAR in daily life.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.