Controlling the spread of bacterial infectious diseases is a major public health issue, particularly in view of the pandemic of bacterial resistance to antibiotics. In this context, the detection and identification of pathogenic bacteria is a prerequisite for the implementation of control measures. Current reference methods are mainly based on culture methods, which generate a delay in obtaining a result and requires equipment. Consequently, focusing on the detection of the whole bacterium represents a very attractive alternative, since no culture is required. Several techniques have already been deployed to identify whole-cell bacteria. In recent decades, growing interest in nucleic acid aptamers has emerged as a viable alternative to antibodies as recognition elements, offering preferable stability, cost-efficiency, good specificity and affinity. This review explores current alternative methods for the detection of whole-cell bacteria, with particular emphasis on aptamer-based assays. These assays have shown promising results in various transduction mechanisms, including optical, electrochemical, and mechanical approaches, enhancing their versatility in different diagnostic platforms. The integration of aptamers in these detection methods offers rapid, sensitive, versatile and portable solutions for pathogen identification, positioning them as valuable tools in the fight against bacterial infections.
Read full abstract