We consider the weighted k-set packing problem, where, given a collection S\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$${\\mathcal {S}}$$\\end{document} of sets, each of cardinality at most k, and a positive weight function w:S→Q>0\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$w:{\\mathcal {S}}\\rightarrow {\\mathbb {Q}}_{>0}$$\\end{document}, the task is to find a sub-collection of S\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$${\\mathcal {S}}$$\\end{document} consisting of pairwise disjoint sets of maximum total weight. As this problem does not permit a polynomial-time o(klogk)\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$o(\\frac{k}{\\log k})$$\\end{document}-approximation unless P=NP\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$P=NP$$\\end{document} (Hazan et al. in Comput Complex 15:20–39, 2006. https://doi.org/10.1007/s00037-006-0205-6), most previous approaches rely on local search. For twenty years, Berman’s algorithm SquareImp (Berman, in: Scandinavian workshop on algorithm theory, Springer, 2000. https://doi.org/10.1007/3-540-44985-X_19), which yields a polynomial-time k+12+ϵ\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\frac{k+1}{2}+\\epsilon $$\\end{document}-approximation for any fixed ϵ>0\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\epsilon >0$$\\end{document}, has remained unchallenged. Only recently, it could be improved to k+12-163,700,993\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\frac{k+1}{2}-\\frac{1}{63,700,993}$$\\end{document} by Neuwohner (38th International symposium on theoretical aspects of computer science (STACS 2021), Leibniz international proceedings in informatics (LIPIcs), 2021. https://doi.org/10.4230/LIPIcs.STACS.2021.53). In her paper, she showed that instances for which the analysis of SquareImp is almost tight are “close to unweighted” in a certain sense. But for the unit weight variant, the best known approximation guarantee is k+13+ϵ\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\frac{k+1}{3}+\\epsilon $$\\end{document} (Fürer and Yu in International symposium on combinatorial optimization, Springer, 2014. https://doi.org/10.1007/978-3-319-09174-7_35). Using this observation as a starting point, we conduct a more in-depth analysis of close-to-tight instances of SquareImp. This finally allows us to generalize techniques used in the unweighted case to the weighted setting. In doing so, we obtain approximation guarantees of k+ϵk2\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\frac{k+\\epsilon _k}{2}$$\\end{document}, where limk→∞ϵk=0\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\lim _{k\\rightarrow \\infty } \\epsilon _k = 0$$\\end{document}. On the other hand, we prove that this is asymptotically best possible in that local improvements of logarithmically bounded size cannot produce an approximation ratio below k2\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\frac{k}{2}$$\\end{document}.
Read full abstract