Ionization energies (IEs) of organic compounds come in different forms-adiabatic, vertical, as electrode potentials, or as orbital eigenvalues via Koopmans' theorem. They have been linked to the reactivity towards electrophiles and have been used to quantitatively describe electron transfer processes. The de novo prediction of IEs is only meaningful when an estimate of the prediction's uncertainty is included. Pulsed-field ionization (PFI) experiments have quantified adiabatic IEs with unprecedented precision. In this work, a new set of PFI-derived IEs is compiled from the literature as a benchmark for prediction methods. This set includes many common functional groups, a size range from diatomics to two aromatic rings, and IEs between 7 and 14 eV. The first-principles CCSD(T)/CBS protocol presently used reproduces these values within 0.05 eV. For adiabatic IEs and vertical IEs/orbital eigenvalues predicted using approximate density functional theory (DFT), linear regression models are proposed, so that IEs calculated using different methods can be directly compared on a physical scale. This elimination of systematic errors improves the error statistics and allows the performance of predicted IEs to be evaluated if used in quantitative structure-property or -activity relationships, as the latter implicitly correct a descriptor's bias. Owing to the structural scope of the test set, the minimum and maximum deviations from experiment should correspond to those expected for common organic molecules. Deviations from reference values found for orbital eigenvalues but also for IEs calculated explicitly with HF or semi-empirical MO methods were as large as 0.5 eV to 2.0 eV. Such large errors could also propagate into quantitative structure-property models, as shown in illustrative examples of oxidation rate constants in solution.
Read full abstract