Abstract
In this paper, I review our current understanding of the applicability of hydrodynamics to modeling the quark–gluon plasma (QGP), focusing on the question of hydrodynamization/thermalization of the QGP and the anisotropic hydrodynamics (aHydro) far-from-equilibrium hydrodynamic framework. I discuss the existence of far-from-equilibrium hydrodynamic attractors and methods for determining attractors within different hydrodynamical frameworks. I also discuss the determination of attractors from exact solutions to the Boltzmann equation in relaxation time approximation and effective kinetic field theory applied to quantum chromodynamics. I then present comparisons of the kinetic attractors with the attractors obtained in standard second-viscous hydrodynamics frameworks and aHydro. I demonstrate that, due to the resummation of terms to all orders in the inverse Reynolds number, the aHydro framework can describe both the weak- and strong-interaction limits. I then review the phenomenological application of aHydro to relativistic heavy-ion collisions using both quasiparticle aHydro and second-order viscous aHydro. The phenomenological results indicate that aHydro provides a controlled extension of dissipative relativistic hydrodynamics to the early-time far-from-equilibrium stage of heavy-ion collisions. This allows one to better describe the data and to extract the temperature dependence of transport coefficients at much higher temperatures than linearized second-order viscous hydrodynamics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.