Data smoothing algorithms are commonly applied to reduce the level of noise and eliminate the weak textures contained in digital images. Anisotropic diffusion algorithms form a distinct category of noise removal approaches that implement the smoothing process locally in agreement with image features such as edges that are typically determined by applying diverse partial differential equation (PDE) models. While this approach is opportune since it allows the implementation of feature-preserving data smoothing strategies, the inclusion of the PDE models in the formulation of the data smoothing process compromises the performance of the anisotropic diffusion schemes when applied to data corrupted by non-Gaussian and multimodal image noise. In this study the authors first evaluate the positive aspects related to the inclusion of a multi-scale edge detector based on the generalisation of the Di Zenzo operator into the formulation of the anisotropic diffusion process. Then, a new approach that embeds vector median filtering into discrete implementation of the anisotropic diffusion is introduced to improve the performance of the noise removal algorithm when applied to multimodal noise suppression. To evaluate the performance of the proposed data smoothing strategy, a large number of experiments on various types of digital images corrupted by multimodal noise were conducted.