Information Theory started and, according to some, ended with Shannon’s seminal paper “A Mathematical Theory of Communication” (Shannon 1948). Because its significance and flexibility were quickly recognized, there were numerous attempts to apply it to diverse fields outside of its original scope. This prompted Shannon to write his famous essay “The Bandwagon” (Shannon 1956), warning against indiscriminate use of the new tool. Nevertheless, non-standard applications of Information Theory persisted. Very soon after Shannon’s initial publication (Shannon 1948), several manuscripts provided the foundations of much of the current use of information theory in neuroscience. MacKay and McCulloch (1952) applied the concept of information to propose limits of the transmission capacity of a nerve cell. This work foreshadowed future work on what can be termed “Neural Information Flow”—how much information moves through the nervous system, and the constraints that information theory imposes on the capabilities of neural systems for communication, computation and behavior. A second set of manuscripts, by Attneave (1954) and Barlow (1961), discussed information as a constraint on neural system structure and function, proposing that neural structure in sensory system is matched to statistical structure of the sensory environment, in a way to optimize information transmission. This is the main idea behind the “Structure from Information” line of research that is still very active today. A third thread, “Reliable Computation with Noisy/Faulty Elements”, started both in the information-theoretic community (Shannon and McCarthy 1956) and neuro-science (Winograd and Cowan 1963). With the advent of integrated circuits that were essentially faultless, interest began to wane. However, as IC technology continues to push towards smaller and faster computational elements (even at the expense of reliability), and as neuromorphic systems are developed with variability designed in (Merolla and Boahen 2006), this topic is gaining in popularity again in the electronics community, and neuroscientists again may have something to contribute to the discussion.