The siliceous structure that protects diatoms, called frustule, is the main component of diatom sedimentary soils. These particles’ physical and mechanical characteristics are challenging, given their geometric conditions of only a few microns. For this evaluation, specialized tools must be used, such as the Scanning Electron Microscope (SEM), the Atomic Force Microscope (AFM) and X-ray dispersion (XRD), among others. The bibliographic references show significant variability in the “load-deformation” behavior in frustules, diatoms or their organic components. Technical background information usually presents information on a single type of species. This research demonstrated the characterization and micromechanical evaluation of frustules of three morphologically distinguishable species of diatoms (Colombian, Mexican and Peruvian origin). The results showed similarities in the chemical composition of the three samples. The displacement records are variable depending on the species for the same load range. The location of the load application points by AFM on the different types of frustules is presented. The most significant deformation in the Mexican species and the regularity in the results of the Peruvian species stand out. Young’s moduli were also calculated by applying the Hertz Model, which had the highest values in the Colombian sample.
Read full abstract