The interchange between electrospray ionization (ESI) and corona discharge ionization (CDI) with respect to applied bias on the needle is customarily placed at the point where light production begins at the tip of the needle. If a liquid sample is flowing through a needle that is observed to produce light, the ionization process is assumed to be harsher and the term coronaspray ionization has been coined to describe this hybrid ionization mechanism. In this work, the transition between ESI and CDI is investigated with respect to applied bias through optical and mass spectrometric measurements. As a function of applied bias potential, the optical signal at the tip of the needle was recorded simultaneously with the resultant ionization products. In this effort, the production of ions from an electrospray ionization needle has been demonstrated to produce light regardless of bias if ions are also formed. With this understanding, an ESI/CDI needle was designed to allow the bias to be temporarily pulsed over the ‘onset’ voltage necessary for ionization and the rise and decay of the optical signal was measured. Positive mode CDI onset to a stable discharge state within 0.05 ms, while positive ESI required 1.9 ms to reach a stable condition. In the negative mode, the stability of the ionization process was highly variable in both ESI and CDI modes, though CDI was generally faster to reach the stable mode of operation. When the resultant ions were investigated, the effect of increased bias on an ESI needle was found to be species-dependent. Recognizing that the range of compounds probed was limited, for those examined, it appears that stable, non-labile species may be investigated via ESI under extremely high biases while labile species demonstrate a narrow range of stable biases before significant fragmentation occurs.