Here, theoretical relationships between the parameters of the electric pulse, which is necessary to porate the cell by electric pulse of various shapes, have been obtained. The theoretical curves were compared with the experimental relationships. Experiments were carried out with human erythrocytes, Chinese hamster ovary and mouse hepatoma MH-22A cells. The fraction of electroporated MH-22A cells was determined from the extent of the release of intracellular potassium ions and erythrocytes-from the extent of their hemolysis after long (20-24 h) incubation in 0.63% NaCl solution at 4°C. The dependence of the fraction of electroporated cells on the amplitude of the electric field pulse was determined for pulses with the duration from 95 ns to 2 ms. The shapes of theoretical dependencies are in agreement with experimental ones. The cell poration time depended on the intensity of the pulse: the shorter the pulse duration, the higher the electric field strength has to be. This dependence is much more pronounced for pulses . For example, if the pulse amplitude required to electroporate 50% of human erythrocytes increased from 1.0 to 1.76 kV/cm, when the duration of a square-wave pulse was reduced from 2 ms to 20 μs, it increased from 3 to 12 kV/cm, when the pulse duration was reduced from 950 to 95 ns. The relationships between the electric field strength required for electroporation and the frequency of the applied ac field were calculated for different pulselengths. It has been obtained that although the electric field strength is constant for frequencies but its value depends on the pulselength decreasing with increasing pulse duration. At higher frequencies, electric field strength is dependent on the frequency of the ac field.