A polyomino is a polygonal region with axis-parallel edges and corners of integral coordinates, which may have holes. In this paper, we consider planar tiling and packing problems with polyomino pieces and a polyomino container P . We give polynomial-time algorithms for deciding if P can be tiled with k × k squares for any fixed k which can be part of the input (that is, deciding if P is the union of a set of non-overlapping k × k squares) and for packing P with a maximum number of non-overlapping and axis-parallel 2 × 1 dominos, allowing rotations by 90°. As packing is more general than tiling, the latter algorithm can also be used to decide if P can be tiled by 2 × 1 dominos. These are classical problems with important applications in VLSI design, and the related problem of finding a maximum packing of 2 × 2 squares is known to be NP-hard [ 6 ]. For our three problems there are known pseudo-polynomial-time algorithms, that is, algorithms with running times polynomial in the area or perimeter of P . However, the standard, compact way to represent a polygon is by listing the coordinates of the corners in binary. We use this representation, and thus present the first polynomial-time algorithms for the problems. Concretely, we give a simple O(n log n )-time algorithm for tiling with squares, where n is the number of corners of P . We then give a more involved algorithm that reduces the problems of packing and tiling with dominos to finding a maximum and perfect matching in a graph with O ( n 3 ) vertices. This leads to algorithms with running times \(O(n^3 \frac{\log ^3 n}{\log ^2\log n})\) and \(O(n^3 \frac{\log ^2 n}{\log \log n})\) , respectively.
Read full abstract