Abstract

Circle graphs are derived from the intersections of a set of chords. They have applications in VLSI design, bioinformatics, and chemistry. Some intractable problems on general graphs can be solved in polynomial time on circle graphs. As such, the study of circle graph algorithms has received attention. State-of-the-art algorithms for finding the maximum weight clique of a circle graph are very efficient when the graph is sparse. However, these algorithms require $\Theta(n^2)$ time when the graph is dense. We present an algorithm that is a factor of $\sqrt{n}$ faster for dense graphs in which many chord endpoints are shared. We also argue that these assumptions are practical.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.