The High Energy Photon Source (HEPS), is the first fourth-generation storage ring light source being built in the suburb of Beijing, China. The storage ring was designed with the emittance lower than 60 pm.rad with a circumference of 1.36 km and beam energy of 6 GeV. Its injector contains a 500 MeV S-band Linac and a 454 m booster which was designed as an accumulator at the extraction energy. In the energy ramping control design of HEPS booster, the ramping process was programed to be able to stop and stay at any energy between the injection energy and the extraction energy. This feature enables us to conduct energy-dependent machine studies and ramping curve optimization. The beam commissioning of HEPS Linac finished in June, 2023. And the beam commissioning of booster started in the end of July, 2023. In November 17, main target values proposed in the preliminary design report has been reached. The high-level applications (HLAs) are essential tools for beam commissioning. The development of HLAs, which are based on the framework named Python accelerator physics application set (Pyapas), started in the end of 2021. The HEPS physics team spent more than one year to develop and test the HLAs to meet the requirements of beam commissioning of the booster. Thanks to the modular design, the principle based on physical quantities, and the ability of running simulation models online from the Pyapas, the development efficiency and reliability of the HLAs have been greatly improved. In particular, the principle based on physical quantities allows us to control the beam more intuitively.
Read full abstract