Magnesium (Mg) alloys are a promising candidate for synthetic bone tissue substitutes. In bone tissue engineering, achieving a balance between pore characteristics that facilitate biological functions and the essential stiffness required for load-bearing functions is extremely challenging. This study employs binder jet additive manufacturing to fabricate an interconnected porous structure in Mg alloys that mimics the microporosity and mechanical properties of human cortical bone types. Using scanning electron microscopy, micro-computed tomography, and mercury intrusion porosimetry, we found that the binder jet printed and sintered (BJPS) MgZnZr alloys possess an interconnected porous structure, featuring an overall porosity of 13.3 %, a median pore size of 12.7 μm, and pore interconnectivity exceeding 95 %. The BJPS MgZnZr alloy demonstrated a tensile strength of ~130 MPa, a yield strength of ~100 MPa, an elastic modulus of ~21.5 GPa, and an ultimate compressive strength of ~349 MPa. These values align with the ranges observed in human bone types and outperform those of porous Mg alloys produced using the other conventional and additive manufacturing methods. Moreover, the BJPS MgZnZr alloy showed level 0 cytotoxicity with a greater MC3T3-E1 cell viability, attachment, and proliferation when compared to a cast MgZnZr counterpart, since the highly interconnected 3D porous structure provides cells with an additional dimension for infiltration. Finally, we provide evidence for the concept of using binder jet additive manufacturing for fabricating Mg implants tailored for applications in hard tissue engineering, including craniomaxillofacial procedures, bone fixation, and substitutes for bone grafts. The results of this study provide a solid foundation for future advancements in digital manufacturing of Mg alloys for biomedical applications.
Read full abstract