Abstract

Porous bioceramic scaffolds were obtained by the 3D printing technique starting from a mixture of hydroxypropyl methyl cellulose and a powder obtained by sol-gel method which contains merwinite, monticellite, pseudowolastonie and periclase.The scaffolds were thermally treated at 1370 °C for 3 h and the main mineralogical compound assessed by XRD was akermanite. The obtained scaffolds have adequate mechanical and biological properties thus a great potential for applications in hard tissue engineering. The positive results obtained for this type of scaffolds are due to the precision of 3D printing technique, i.e. ability to control shape and size of both scaffolds and pores, as well as the high reproducibility. The porous bioactive ceramic scaffolds have adequate compressive strength (up to 3.5 MPa) and exhibit mineralization capacity and potential in stimulating cell adhesion and proliferation as well as bacteriostatic properties.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.