We aimed to generate induced pluripotent stem cells (iPSCs)-derived retinal pigmented epithelium (RPE) cells from peripheral blood mononuclear cells (PBMCs) and age-related macular degeneration (AMD) patient to provide potential cell sources for both basic scientific research and clinical application. In this experimental study, PBMCs were isolated from the whole blood of a 70-year-old female patient with AMD and reprogrammed into iPSCs by transfection of Sendai virus that contained Yamanaka factors (OCT4, SOX2, KLF4, and c-MYC). Flow cytometry, real-time quantitative polymerase chain reaction (qPCR), karyotype analysis, embryoid body (EB) formation, and teratoma detection were performed to confirm that AMD-iPSCs exhibited full pluripotency and maintained a normal karyotype after reprogramming. AMD-iPSCs were induced into RPE cells by stepwise induced differentiation and specific markers of RPE cells examined by immunofluorescence and flow cytometry. The iPSC colonies started to form on three weeks post-infection. AMD-iPSCs exhibited typical morphology including roundness, a large nucleus, sparse cytoplasm, and conspicuous nucleoli. QPCR data showed that AMDiPSCs expressed pluripotency markers (endo-OCT4, endo-SOX2, NANOG and REX1). Flow cytometry indicated 99.7% of generated iPSCs was TRA-1-60 positive. Methylation sequencing showed that the regions of OCT4 and NANOG promoter were demethylated in iPSCs. EBs and teratomas formation assay showed that iPSCs had strong differentiation potential and pluripotency. After a series of inductions with differentiation mediums, a monolayer of AMDiPSC- RPE cells was observed on day 50. The AMD-iPSC-RPEs highly expressed specific RPE markers (MITF, ZO-1, Bestrophin, and PMEL17). A high quality iPSCs could be established from the PBMCs obtained from elderly AMD patient. The AMDiPSC displayed complete pluripotency, enabling for scientific study, disease modeling, pharmacological testing, and therapeutic applications in personalized medicine. Collectively, we successfully differentiated the iPSCs into RPE with native RPE characteristics, which might provide potential regenerative treatments for AMD patients.
Read full abstract